
HOW TO
SECURELY
CONFIGURE A
LINUX HOST TO
RUN CONTAINERS

How To Securely Configure
a Linux Host to Run Containers

To run containers securely, one must go through a multitude of steps to ensure that a) the environment
– the host & the operating system – is set up correctly and hardened, b) the images and containers are
configured in a robust fashion, and c) the system has the necessary integration with components like
enterprise directories, SIEM systems, etc.

This guide focuses on concrete steps to configure a host to run Docker containers securely in produc-
tion.

An out-of-the box installation of just about any Linux distribution would be capable of running the Dock-
er daemon and Docker containers, but it would leave your host exposed to many security and perfor-
mance concerns. In this guide, we will use a minimal install of CentOS 7, as an example host, to illustrate
specific configuration steps to harden the host and the OS. CentOS has benefited from the Red Hat
Enterprise development ecosystem and has proven to be a stable and secure Linux
distribution for data centers.

If you choose to use a different distribution, the practices suggested in this guide are still relevant but
will require that the provided sample commands be translated to your target environment.

There are three main steps that are required to configure a basic CentOS host for production.

•	 Strip the operating system of any extra services and software so that only the tools 	
	 and services required to run Docker are up and running.

•	 Install and configure the Docker daemon to run your containers. This includes both 	
	 performance and security settings that configure Docker to be more suitable for a 	
	 production environment rather than a development environment.

•	 Configure the firewall to only allow incoming traffic for SSH by default and open 	
	 ports on-demand that are required by the containers for external communication.

02 Twistlock.comHow to securely Configure A Linux Host To Run Containers

https://www.twistlock.com

Install CentOS 7

Minimal Install
	
This guide assumes a minimal install of CentOS 7 from the official image. If you have previously installed
CentOS, there are some additional steps you might want to consider:

•	 Remove all development tools (compilers, etc.)

•	 Remove all services listening so that only port 22 is exposed for SSH access. Our 		
	 firewall configuration will stop traffic intended for any other running services but it 		
	 is best practice to stop and remove these additional services.

Install nmap
Nmap is an open source security tool that can be used to gather information about a network or
host. We will use it to scan for open ports and listening services on our host.

sudo yum install nmap -y
The -y option answers [yes] silently for any prompts from yum. Typically these are con-
firmation messages relating to downloading and installing packages.

03 Twistlock.comHow to securely Configure A Linux Host To Run Containers

https://www.twistlock.com

Update system sources
	
Updating the system sources ensures that all of your libraries and programs are running the latest
versions. This is good practice to do for any new Linux installation, not just for production servers.

sudo yum update -y

Create a new user
	
We don’t want to do everything on this host using our root user, so it is a good practice to add a new
user and execute the rest of commands as that user.

For example: Add a new user with the username dockeruser

1 |	 Add a new user to the host.
		 adduser dockeruser

2 | 	 Set a password for the new user
		 passwd dockeruser

3 |	 Add user to the wheel group to give sudo access
		 usermod -a -G wheel dockeruser

04 Twistlock.comHow to securely Configure A Linux Host To Run Containers

https://www.twistlock.com

05 Twistlock.comHow to securely Configure A Linux Host To Run Containers

Generate keys for SSHD
	
A security best practice is to disable password based authentication for SSH. To do this we will generate
public/private keys and copy them over to the server as authenticated keys. The steps below will show
how to generate keys for a linux or OSX machine. (To generate keys for Windows please see one of the
great guides online)

1 |	 On your client machine generate ssh key
		 ssh-keygen –t rsa

2 |	 Running this command will create two files in your home directory’s .ssh directory

		 a. id_rsa -- This file is your private key

	 	 b. id_rsa.pub -- This file is your public key

3 |	 Log in to your Docker host as dockeruser
		 mkdir ~/.ssh
		 sudo chmod 700 ~/.ssh

4 |	 Copy the public key to your Docker host. For Example
		 scp ~/.ssh/id_rsa.pub dockeruser@10.0.0.37:~/.ssh/authorized_keys

5 |	 You should now be able to login to your host without using a password from
	 the client system
		 ssh dockeruser@10.0.0.37

Disable root login and password based authentication ssh

We don’t want people to be able to login to our system using the root user. Additionally, we don’t want
to allow people to login using a password either. This helps us protect against brute force attacks
against our users. In the last section, we added a new user to the system and copied their public keys to
the server. This user should be used for the rest of your configuration.

1 |	 Login to your host using the user added in the last section
	
2 | 	 Edit the SSH daemon configuration to disable root logins
	 	 sudo vi /etc/ssh/sshd_config

3 |	 Find the line with the following text
		 #PermitRootLogin yes

4 |	 Change the line to read
		 PermitRootLogin no

5 |	 Find the line with the following text
		 #PasswordAuthentication yes
	
6 | 	 Change the line to read
		 PasswordAuthentication no

7 |	 Restart SSHD
		 sudo systemctl restart sshd.service

https://www.twistlock.com

06 Twistlock.comHow to securely Configure A Linux Host To Run Containers

Stop any services other than SSHD

Ideally, you only want ssh listening on your container host when no containers are running. This host is
dedicated to running our containers and as such should not be running any additional services if pos-
sible. It is advisable to change the port ssh listens on to further enhance security. For this guide we will
leave to listen on the default port 22.

1 |	 List any open and listening ports
		 sudo nmap -sU -sS -p 1-65535 localhost

	

		 In this case, we have two open and listening TCP ports. Port 22 is open to run our 		
		 ssh listener and port 25 is open for SMTP traffic. By default, CentOS 7 comes with 		
		 postfix installed.

2 |	 Stop and Remove postfix
	 	
		 a. Stop postfix service
	 	 	 	 sudo systemctl stop postfix

		 b. Check that postfix is no longer listening on port 25
			 sudo nmap -sU -sS -p 1-65535 localhost
	

		 c. Remove postfix from our host
			 sudo yum remove postfix

https://www.twistlock.com

Installing and Configuring Docker

Install Docker

1 |	 Configure yum to find the Docker repository
	 	
		 a. Create a new file to hold the Docker repository’s information
			 sudo vi /etc/yum.repos.d/docker.repo
		
		 b. Add the following contents to the file:
				 [dockerrepo]
				 name=Docker Repository
				 baseurl=https://yum.dockerproject.org/repo/main/centos/7/
				 enabled=1
				 gpgcheck=1
				 gpgkey= https://yum.dockerproject.org/gpg
	
		 c. Save the file

2 |	 Install the Docker package
		 sudo yum install docker-engine -y

3 |	 Start the docker engine
		 sudo service docker start
		 Alternate: systemctl start docker

07 Twistlock.comHow to securely Configure A Linux Host To Run Containers

https://www.twistlock.com

4 |	 Verify the docker engine is running correctly
	 	 sudo docker run hello-world

5 |	 Configure the Docker daemon to start at boot
	 	 sudo chkconfig docker on
		 Alternate: sudo systemctl enable docker

08 Twistlock.comHow to securely Configure A Linux Host To Run Containers

https://www.twistlock.com

Configure Docker

We need to configure Docker for use in a production environment by configuring increased security and
adding container resource consumption limits. We do this by passing command line arguments to the
Docker Daemon. The command line operands we will use are summarized below.	

--icc=false

Disable inter-container communication. This is a more secure default than allowing con-
tainers to communicate with each other.

	 •	 If you know your application topology, you can enable specific containers to talk
		 to each other using the --link parameter
		 (--link=CONTAINER_NAME_or_ID:ALIAS)

	 •	 If you need to have containers talking to each other but are unsure of your ap		
		 plication topology, you can set this to true but this is somewhat insecure in that 		
		 it allows full network communication between all containers.

--log-level=“info”

Set the log level to info. Logging is available at several levels, but can sometimes be very
verbose. Log level info is the preferred logging level to get the information you need while not
logging information that won’t be as useful and takes up a lot of space on disk.

--iptables=true

Enable addition of iptables rules. We want to allow Docker to change iptables rules basedon the
requirements of the containers. For example, we start a container that is supposed to listen on
port 80 to server web requests. By default, in a secure system, we aren’t allowing any traffic on
port 80 due to our firewall rules. This will allow Docker to decide that traffic on port 80 should
be allowed while the container is running.

--default-ulimit

Set default ulimits for your containers. This operand will help you set up soft and hard limits on
the number of processes and files. This helps ensure that a container doesn’t greedily consume
the host’s resources rendering the machine (and other containers) inaccessible. These numbers
need to be tuned for your specific application / containers but below is an example with sensi-
ble defaults.
	
	 •	 --default-ulimit nproc=1024:2048 --default-ulimit nofile=1020:2048

09 Twistlock.comHow to securely Configure A Linux Host To Run Containers

https://www.twistlock.com

--disable-legacy-registry=false

Limit communication to registries that are running version 2 of the Docker protocol. Version 2
has many features that enhance security such as image provenance and image signing, but also
brings performance improvements as well.

	 1 |	 Edit the docker.service file
			 sudo vi /usr/lib/systemd/system/docker.service

	 2 |	 Find the line that reads
			 ExecStart=/usr/bin/dockerd

	 3 |	 Modify that line to read
		 	 ExecStart=/usr/bin/dockerd --icc=false --log-level=”info” --iptables=true
	 	 	 --default-ulimit nproc=1024:2408 --default-ulimit nofile=1024:2048
			 --disable-legacy-registry=false

	 4 |	 Reload units
			 sudo systemctl daemon-reload

	 5 |	 Restart the Docker daemon
			 sudo service docker restart

	 6 |	 Verify command line operands are now passed to Docker
			 ps -eaf | grep docker

10 Twistlock.comHow to securely Configure A Linux Host To Run Containers

https://www.twistlock.com

Configure iptables

Iptables is the firewall we will use to secure this system. At a high level, the firewall configuration
should drop all input and forwarding traffic, and then whitelist ssh traffic. By default, CentOS 7
ships with firewalld for configuring iptables. For our installation, we will disable firewalld and use
iptables services for firewall configuration.

1 |	 Disable firewalld
	 	 sudo systemctl disable firewalld

2 |	 Install iptables-services
		 sudo yum install iptables-services -y

3 |	 Enable iptables services
	 	 sudo systemctl enable iptables

4 |	 Configure the iptables rules (In the final rule replace <serverip> with your server’s
	 ip-address without the <>
		 sudo iptables -P INPUT DROP
		 sudo iptables -P FORWARD DROP
		 sudo iptables -A INPUT -p tcp -s 0/0 -d <serverip> --sport 513:65535 --dport 			
		 22 -m state --state NEW,ESTABLISHED -j ACCEPT

5 |	 Save the iptables rules
		 sudo service iptables save

6 |	 Verify iptables rules
	 	 sudo iptables --list

11 Twistlock.comHow to securely Configure A Linux Host To Run Containers

https://www.twistlock.com

Testing by installing nginx

Let’s test our Docker installation by downloading and running nginx. Nginx is a popular lightweight
webserver.

1 |	 Download image
	 	 sudo docker pull nginx (alpine / nginx:latest)

2 |	 Start the nginx container
	 	 sudo docker run --name docker-nginx -p 80:80 nginx
			 Note: -p 80:80 maps the container’s port 80 to the hosts external port 80. 		 	 	
	 	 This will modify our iptables rules to allow for traffic to flow over port 80

3 |	 Connect to the host’s ip-address on port 80
	 	 For example: http://10.0.0.160

You should see the following in your browser:

12 Twistlock.comHow to securely Configure A Linux Host To Run Containers

https://www.twistlock.com

13 Twistlock.comHow to securely Configure A Linux Host To Run Containers

Summary

Configuring a host to run containers in production in a secure fashion requires attention to both security
and performance concerns. This guide presents a starting point for a production host and it is up to the
system administrator to keep the system up to date and tuned going forward. As new security issues
and vulnerabilities emerge, you need to stay on top of security patches and keep your system updated,
which is a topic that we will cover in a future guide. It is also good practice to incorporate some kind
of auditing to ensure you know who is doing what on your host. We hope you find this guide useful in
helping you take the steps necessary to run Docker securely in your production environment.

https://www.twistlock.com

About Twistlock

Learn more at
Twistlock.com

Twistlock protects today’s applications from tomorrow’s
threats with advanced intelligence and machine learning
capabilities. Automated policy creation and enforcement
along with native integration to leading CI/CD tools pro-
vide security that enables innovation by not slowing devel-
opment. Robust compliance checks and extensibility allow
full control over your environment from developer work-
stations through to production. As the first end-to-end
container security solution, Twistlock is purpose-built to
deliver modern security.

Enterprise Security. DevOps Agility.

http://twistlock.com

